Standing Waves

wave function:
$$y(x,t) = 2A\cos(wt)\sin(wt)$$

nodes:
$$x_{\text{node}} = \frac{n}{2}I$$

antinodes:
$$x_{\text{antinode}} = \frac{2n+1}{4}I$$

Resonant Waves on a String

If the string is tied on both ends, there are nodes on both ends. If L is the length of the string, then $L=n\frac{1}{2}$.

Waves with wavelengths $\boldsymbol{I}_n = \frac{2L}{n}$ and frequencies $f_n = \frac{nv}{2L}$ are called **normal modes** (or n-th harmonics). The normal mode with n=1 is called the **fundamental mode** or first harmonic.

For a wave on a string, the phase velocity is $v=\sqrt{\frac{F}{\pmb{m}}}$, therefore the normal modes have frequencies $f_n=\frac{n}{2L}\sqrt{\frac{F}{\pmb{m}}}$.